
Product Gallery Slider -
Documentation

Version: 1.5.0

Thank you for choosing Product Gallery Slider! This guide will walk you through setting up and
customizing the plugin for your WordPress site.

1. User Guide

This section covers the basic installation and usage of the plugin for non-developers.

1.1. Installation

1. Download the product-gallery-slider.zip file.
2. In your WordPress dashboard, navigate to Plugins > Add New.
3. Click the Upload Plugin button at the top of the page.
4. Choose the product-gallery-slider.zip file and click Install Now.

5. Once installed, click Activate Plugin.

1.2. Standard Gallery (Shortcode & Block)

You have two ways to add a standard gallery to any page or post.

Using the Gutenberg Block (Recommended)

1. In the page editor, click the "+" button to add a new block.
2. Search for "Product Gallery Slider" and add it.
3. Click the "Select Images" button to open the Media Library.

4. Choose your images and click "Create a new gallery", then "Insert gallery".

Using the Shortcode

To create a gallery with three images (with Media Library IDs: 123, 45, 678), you would use:

[product_gallery ids="123, 45, 678"]

1.3. WooCommerce Integration

The plugin automatically integrates with WooCommerce. You have two options for displaying the
gallery on your single product pages.

Option A: Automatic Replacement (Default)

By default, the plugin will automatically replace the standard WooCommerce product gallery. This
works for most standard themes. No action is required.

Option B: Manual Placement with Shortcode (For Page Builders)

If you use a page builder (like Elementor, Divi, etc.), use the [wc_product_gallery] shortcode
for full control.

1. In your page builder layout, remove the default "Product Images" widget.
2. Add a "Shortcode" or "HTML" widget in its place.
3. Insert the shortcode: [wc_product_gallery]

Note: If your layout has separate sections for mobile and desktop, you can safely use this
shortcode in both. The plugin will handle it correctly.

2. Developer Guide

This section provides information on how to extend and customize the plugin using WordPress
filters and JavaScript events. Add the following code snippets to your theme's functions.php file
or a custom plugin.

2.1. PHP Filters

pgs_auto_replace_wc_gallery

Disable the automatic replacement of the WooCommerce gallery. This is useful if you only want to
use the [wc_product_gallery] shortcode for placement.

Type: boolean
Default: true

add_filter('pgs_auto_replace_wc_gallery', '__return_false');

pgs_variation_gallery_images

Modify the gallery images for a specific product variation.

Parameters:
$images (array): The array of image data for the variation.
$variation_obj (WC_Product_Variation): The variation product object.
$product (WC_Product): The main parent product object.

Example: Add a specific lifestyle image to a "Blue T-Shirt" variation.

add_filter('pgs_variation_gallery_images', 'add_lifestyle_image_to_blue_variation', 10, 3);

function add_lifestyle_image_to_blue_variation($images, $variation_obj, $product) {

 // Target a specific product by its slug
 if ($product->get_slug() !== 't-shirt') {
 return $images;
 }

 // Target the 'Blue' variation by its attribute
 if ($variation_obj->get_attribute('color') === 'Blue') {

 $lifestyle_image_id = 456; // The ID of your lifestyle image

 $image_url = wp_get_attachment_image_url($lifestyle_image_id, 'large');

 if ($image_url) {
 // Add the new image to the end of the gallery
 $images[] = [
 'url' => $image_url,
 'alt' => 'Model wearing the blue t-shirt',
];
 }
 }

 return $images;
}

2.2. JavaScript Custom Event

The plugin fires a custom event on the document object whenever the active image in a gallery
changes.

Event Name: pgs_after_image_change
Event Detail: The event's detail object contains:

gallery (object): The ProductGallery class instance.

newIndex (integer): The index of the newly active image.

Example: Log the new image index to the console whenever the gallery changes.

document.addEventListener('pgs_after_image_change', function(e) {
 const galleryInstance = e.detail.gallery;
 const newImageIndex = e.detail.newIndex;

 console.log('Gallery image changed!');
 console.log('Gallery ID:', galleryInstance.galleryWrapper.id);
 console.log('New active image index:', newImageIndex);
});

